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We develop an auxiliary program construction which provides a method for construct - 
ing the resolving strategies in a linear encounter-evasion differential game. We ascer- 

tain the relations between the various methods for constructing the resolving strategies. 

1. We examine the conflict-controlled system described by the equation 

dxldt = A (1) x + B (t) u + C (t) v (1.1) 

Here x is the n-dimensional phase vector; u and v are the controls of the first and 

second players, with the constraints 

u E P, VEQ (1.2) 

where P and 0 are convex compacta ; A (t), B (t) and c (t) are matrices with 

elements continuous in t . The players’strategies and the motions they generate are 
defined according to [ 1, 21. 

Let there be given a closed set Mr in space {x), the initial position {t,,, x,,} and 
the instant t = 19 (6 > to). The first player poses the problem of finding the strategy 
U” + U” (t, x) which ensures the equality 

max P (x 16, t0, X0, VI, MI) == miri max p(x [6, to, x0, U], M,) (1.3) 
x it1 u x ItI 

the second player poses the problem of finding a strategy V” + v” (t, x) such that 

min p (x [fi, t0, x0* V”], M,) = max min p (x [6, t0, X0, VI, MI) (1.4) 
I rfi v x 1t1 

By P (x[o.), M,) we have denoted the Euclidean distance from point x 161 to set Mr. 

If the encounter problem is solvable, then there exists a limitedly wide u-stable bridge 

[1] connecting the initial position with set M,; conversely, if the evasion problem is 
solvable, then there exists a u-stable bridge [l] passing through the initial position and 

bypassing set M,. On the other hand, if we succeed in constructing a ustable (v stable) 
bridge connecting the initial position with set M, (bypassing set $fr), then the strategy 
u, (vc) exaemal to this bridge solves the encounter (evasion) problem. Several methods 
exist for constructing stable bridges (and resolving strategies) on the basis of program 
constructions [2-63. In the present paper we develop one such construction and establish 
the connection between the various constructions. 

Let us consider the following constructions which are modifications of the con- 
strfations in [3]. The arbitrary function V (t, u) which brings set V (t, u) c: Q into 
congruence with set {t, ir} (u E P) will be called the upper subprogram of the se- 
cond player. 

We divide the interval Ito, 81 into the half-open intervals [TV, ri+r) (i = 0, 1, 2, 
. . .; TO == to) and we define the Euler polygonal line X> [t] = X: [t, to, x0, u [. 1, v (. , u)] 
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as the absolutely continious solution of the equation 

with the initial condition xi [&,I = xo ; as the realizations u [r] E P we take piece- 

wise-constant functions, considering that the points of discontinuity of these functions 
coincide with xi. Every limit of a suitable sequence of Euler polygonal lines (x2’) [f, 
to, XCI”‘, II(@) [ * 1, V (* , IA(~))]} as k - ou, lim,,, supi(~i:i - T!“)) = 0, ]imh._, zik) = 80 

is called a motion xX [t] = xx [t, to, xo, v (. , u)] of system (1. I). The set of all mo- 

tions generated by the upper subprogram V (t, u) is a compactum in C]t,, e]* 
Every sequence fv@] (t, u)} (i = 1,2,. . .) is called the second player’s upper 

program Ii (t, u) , Suppose that some upper program KI (t, u) = {V(i) (t, u)} of the 
second player is specified ; for the subprogram V(i) (t, U) ( i = 1, 2,. . .) we con- 

struct the set of all motions generated by them. From each set we take arbitrarily one 

motion and make up the sequence 

x”(1) [tl, x+ [tl, . . .) x”(h‘) Id,. . . CLv 

where xX(j) [tl is a motion from the set generated by V(i) (t, u). From sequence (2.2) 

of uniformly bounded and equicolrtinuous functions we can select a converging subse- 

quence. The limits of all possible subsequences constructed in such a manner form a 
sheaf I? (II). The motions comprising sheaf I’ (n) aredenotedby x (t, r (Ti)). Itcanbe 
shown that the sheaf I’ (IT) is a compactum in C~ce] and is a u-stable set, i. e. for 

any position {t*, x,) E r (n), for any t* (t* < t* < @) and for an arbitrary con- 
stant u* E P we can find at least one solution of the contingent differential equation 

dx / dt E A (t) x + B (t) u* + C (t) Q (2.3) 

satisfying the condition {t”, x (t”) } E I’ (n). 
The proof is based on the following two fundamental facts. First, there exists a se- 

quence of motions {8) [t]) of system (1.1). generated by the upper subprograms 

Vfr) (t, u), converging uniformly to some motion from the sheaf I’ (II), passing through 

the point I&, x*) and such that the vector sequence {xsfif It,]} converges to x*. Second, 
the uniform limit of the converging subsequence of Euler polygonal lines of system(l.l), 

constructed for u [t] = u*, t E [t,, t*l , and for an arbitrary upper subprogram of the 
second player, is a solution of the contingent equation (2.3). 

We assume that set MI is convex and finite. we denote an R-neighborhood of &f, 

by MIR. We define a closed set M s = {x : x E E, \ hflR}, where we take the 

number Ei to be so large that the distance p (x [@I, M,) from the point x [@I to 

set M, is greater than zero for any motion X ftl of system (1.1). Then for any point 

PE {x : x E llillJi \ ftf,} t h ere exists a unique straight line passing through point 

P, such that p (p, M,) + p (P, MJ = R. 
Obviously. among the upper programs we can find a program II, (t, u) = {V&S (t, 

11)) such that 
lim max p (x3@) 161, n/r,) = inf max p (x” [S], M2) (2.4) 
i-+m sQf]t] VU, .u) K”[l] 

where xX(i) [tl denotes the motion corresponding to the subprogram V,@ ft, u). We 



canalsoveri~ the validity of the equality 

mill mas 
nit,u) ~~f,r(II)) 

where r (Is,) is the sheaf corresponding to the upper program I& (1, u). 

Problem 2.1, Find the minimizing upper program II,, (l, u) and in the sheaf 

(x (f7 r (W)) g enerated by it find a curve x0 (f, r (II,)) such that 

p (x” (6, I? (II,)), A/r,) = mirr max p (x (6), I’ (n)), M,) = (2.6) 
If(f,U) s(t,r’(tr)) 

a1 (S, f,, x0, M/,) 

Problem 2.2. Find the maximizing upper program no (t, u) and in the sheaf 

{x (1, r (no))} find a curve x0 (i, l’(n”)) such that 

From the preceding discussion it follows that at least one solution of Problem 2.1 
exists. 

The following statement is valid. If program n, and curve x0 (t, I’ (II,,)) provide 

the solution of Problem 2.1, then they also provide the solution of Problem 2.2. Conver- 
sely,ifthe pair (W, x0 (t, r (DO))} p rovides the solution af Problem 2.2 and if here 
&r(r) > 0, then this pair provides the solution of Problem 2.1 as well and 

EifY) +. n,(l) r=: 8 (2.3) 

Here and below we introduce the notation ajW = ej (6, t,, zO, &ri), i = 1, 2; 
j = 1, 2,. . . The solutions of Problems 2.3 and 2.2 may not coincide if set iLl, is 

not convex. 
The sheaf r (no), where n, provides the solution of Problem 2.1 is a v-stable 

set. Consequently [ 11, the strategy VI +- v1 (t, zc), extremal to this set, ensures the 

fuIfillment of the inequality 

p (x IS, is, 20, J7,1, Me) < Q) (2.9) 

for every action of the first player. 

Let us now construct the stable sets using a program extremal construction. By 

pr:iram controls we mean any measurable functions u (t) and v (t) (t, < t < 6) 
satisfying inclusions (1,2). A program motion x ft, to, x0, u (a), v (*)) is defined 
as an absolutely continuous solution of the equation 

dX : dt = A (t)x + B (t)u (1) + c (0 v (f?, x(&J =x() (3.1) 

Problem 3.1, Find maximin program controls u” (t), v0 (t) satisfying the eon- 

dition P (x (67 to, x0, u0 (*), v* (*)>, n/r,) = Inr; nil;; p (x (6, to, 10, (3.2) 

u (*), v (a)), M,) = &:((I) 
Problem 3.3 has at least one solution for every choice of initial position (see (21, for 

example). Let S (to, x0) denote the set of all vectors s = s (lo) which are solutions 
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of the Cauchy problem 
as/at = - A’ (t) 3, 

(3.3) 

and which correspond to all possible optimal solutions x0 (t) of Problem 3.1. 

Condition 3.1. For arbitrary initial position (to, xs} , with any choice ofvector 

v* E Q we can find a vector u* E P such that for all S E s (to, 5s) 

s’ cB (t)u* + C (t) v*) < max 
v=Q 

min s’ (B (t) u + C (t) v) (3.4) 
UEP 

Problem 3.1 is said to be regular if Condition 3.1 is satisfied. If Problem 3.1 is regu- 

lar, the set 
IV, = {t, x : t, Q t < 6, EJ’) < c} 

is a u-stable bridge [6] and, consequently, the strategy U, + u1 (t, x) extremal to 

set W,, ensures the fulfillment of the inequality 

p (x [6, to, 20, U,l, JJ,) < e,(l) (3.5) 
The equality 

e,(l) = &3(l) (3.6) 

is valid under the assumptions made above. 
In fact, from inequalities (2.9) and (3.5), with due regard to relation (2.8), it follows 

that 
&:I@) > Q(l) (3.7) 

Let us show that the reverse inequality 
(1) < &) 

83 ' 2 (3.8) 

holds. Suppose that the measurable functions u” (t) and v” (t) provide a solution of Prob- 

lem 3.1. The corresponding motion x0 (t) = x (t, t,, zO, u” ( -), v0 ( a)) can be represen- 
ted by the Cauchy formula 

f t 

x0 (f) -= x (t, to) x0 + s X (I, z) B(r) u” (z) dz + s X (4 f) c (T) V” (z) dT (3.9) 

to to 
where X (t, to) is the fundamental matrix of solutions of the equation x’ = ~4 (t) x. By 

Luzin’s theorem [7], for any 6 > 0 the measurable function v0 (t) can be approximated 

on [to, 61 by a continuous function v* (t) so that for any arbitrary u, (tj E fJ 

p (x @f to, x0, u, (-1, v* (*)), Ml) ,, p (K (6 to, x0, u, (*), v” (a)), Ml) - (3.16) 
6 > Fg(i) - 6 

We choose the function v* (t) as an upper subprogram V (t, u) = v* (t) and among the 
motions generated by it we find the one closest to set Ml at the instant t = 6. This 

motion is the limit of a sequence of Euler polygonal lines corresponding to the sequence 

of piecewise-constant realizations {u (Ir) [t]}. Having chosen from the sequence {u(‘) [r]} 

a weakly converging subsequence {u (A.,) J [t]},we denote its weak limit by u* [t]. The 
limit motion xx [t] = xn: lt, to, xo, v* (a) 1 is represented by the formula 

t t 
xx [f] = x (t, to) x0 + s x (4 z) B (T) u* [z] dz + f X (t, t) C (z) v* (T) df (3.11) 

.J 
f. ‘0 

where the second integral is a Riemann integral. Thus, the program motion x (t, to, XO, 

u* (e), v* (-)) can be treated as a motion generated by the upper program V(t, u)=v*(t) 
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and by the sequence of realizations {u (k,) J [t]} converging weakly to u* (t) . Therefore, 

p (9 (6, to, x0, u* (a), v* (.)), Ml) = min p (x” [6, to, x0, v* (.)J, MI) .< c2(l) (3-12) 

x”[tJ 

Comparing (3.10) and (3.12) and taking into account that 6 can be chosen arbitrarily 

small, we arrive at inequality (3.8). Now, (3.6) follows from (3.7) and (3.8). 

4. Let us discuss the connection of the constructions from Sect. 2 with the construc- 

tions of a priori stable bridges in the form of integral manifolds generated by con- 

tingent equations [2, 61, which correspond to the direct method [4, 51 in the formaliza- 

tion of [2]. 
We define the set 

c (r) -,& (B(t) n + C (r) Q) (4.1) 

and assume that it is nonempty. We consider the contingent equation 

x. E .A1 (t) x + G (t) (4.2) 

All solutions x = cp (t) of Eq. (4.2) possess the property that the path !t, x = rp (t)) is 
v-stable. The collection of all solutions of Eq. (4.2) forms an integral manifold @ which 

is a compacturn. 

Problem 4.1. Find the motion xv0 (t) = xv0 (t, t,,, xr,) from manifold a, 

satisfying the condition 

Let us show that the equality 
e,(2) ZZ a,(r) (4.4) 

is satisfied under a certain additional condition. Let the minimum in (4.3) be reached 

on a function xpD (t) E 0 satisfying the equation 

x,9 
.O = A (1) x0’ + go (t) (4.5) 

where go (t) E G (t). It follows from the definition of set G (t) that g” (t) E 

B (t) U* [tl + C (t) Q for any u * [t] E P. In accordance with Luzin’s theorem 
[7] we approximate the measurable function g” (t) by the continuous function g* (r) 

which on [to, 61 differs from g” (t) in a set of reasonably small measure. 
We specify a function V (7iy Ui) for ts < Zi < 6, Ui t? P (Ui is a constant), 

by the relation 

g* (ai) = B (ri) Ui + C (Ti) v (TiY ui) (4.6) 

It is known a priori that at least one solution of system (4.6) exists. We denote this 
solution by v* (zi, ui) and write the equation 

dx,, ItI 
P ._ 

dt - A (t) XA ItI t B (Ti) u I%] + c i%) v* (G, u [%I) (4.7) 

where u [t] is a piecewise-constant function whose points of discontinuity coincide 
with rj. A solution xA [r] of Eq. (4.7) can be interpreted as an Euler polygonal line 

generated by the upper subprogram V (r, U) = V* (t, u). Under a suitable choice of 
V* (t, u) the motion generated by this upper subprogram differs arbitrarily little from 
the motion x,’ (t). Therefore, 
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i$~’ q ep, (4.8) 

We say that Problem 4,1 is regular if the function 

Xl (1) = - max 1’ B (t) u - min 1’ C (t) v (4.9) 
UEP VEQ 

is convex with respect to 1, In this case the first player has at his disposal the strategy 

tT, -+ ug (t, x), ensuring him the r&%rlt @] 

P (x B, to, x0, Us], Ma) > e&a) (4.10) 

for every action of the second player, Comparing (2.9) and (4. lo), we conclude that 

E&s) < e&2) (4.11) 
Now, (4,4) follows from (4.11) and (4.8). 

We define the set 
w (f) = vE*(B (t) p i- c (0 v) (4.12) 

and assume that it is nonempty. Then the solutions x z y (fr) of the equation 

x’ 6G A (t) x + H (t) F4.13) 

possess the property that every path (8, x z y(t)) (ta < t < 8) is u-stable, The 
collection of all solutions of Eq. (4,131 forms an integral manifold Y which is a com- 

pacturn, 
Problem 4.2, Find the motion x+s (t) = XJ,” (b, to, ~a) frcm manifold Y, 

satisfying the condition 

P (x+0 (6, t,, xg), n/r,) =Xy;c P (x (6, to, x0)7 M,) = %@ (4.14) 

From the u-stability of path (t, x+’ (t)} it foIlows that a strategy us + ua (t, x), 

exists, ensuring the fulfillment of the inequality 

P (x f@* t,, x0+ U,], N,) < es@) E4*15) 

for every action of the second player. Comparing (4.15) with (2.9) and (3.83, we obtain 

Q(l) > es@) > e,(r) (4*16) 

We say that problem 4‘2 is regular if the function 

X* (1) = - miu 1’ B (t) u - max 1’ C (t) v 
UE.p FEQ 

(4.17) 

is convex with respect to 1. In this case we can find a strategy ,V, +. v, (f, x), en- 
suring the result 

P (x I@* Gr* %> VsJ, M,) > e*(r) 

for every action of the first player, Let us show that if Problem 4.2 is regular, the equa- 

lity 
e,(l) _Y n,(l) (4.18) 

is fulfilled. In fact, let us write out the explicit expressions for the quantities r.#) and 
e&l) (see IJYJ + for example) 
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a 

&Y) = max (S max minI’X(fb,z)[B(z)u-/- 
~~+=1 le YEQ UEP 

(4.19) 

cf~)VI~~+1’X(~,~,)-p~,(I)) for $I>0 

a 
(1) 

% = max U min Z’X (6, t) h* (t) dt + 
/~111=1 lo h’EH* 

~‘x(fbG++-pM,(1)) for $)>O 
H* (t) = (h* : s’h* > gymv~ s’ [B (t) u + C(t) vl = - xz (s)) 

Flere X (t, to) is the f~damental matrix of solutions of the equation x’ = A (t)X; 

pMl (i) is the support function of set - Mi. The function “s (s) is convex by defini- 

tion ; therefore, for any s we can find a vector h* (s) sucti that the equality [9] 

S’h* ($1 = mvFQ tinp s’ IB (t)~ + c (t)v] (4.20) 

is satisfied. Now,(4,18) follows from (4.19) and (4.20). allowing for (4.16) in this case 
we afso have et,(i) = es(t). 

5, Let us discuss the connection between the regularity of Problem 4.1 and the re- 
gularity of Problem 3.1. Let the set G (t) of (4.1) be nonempty and let the function 

xi (1) be convex with respect to 1. This implies that for every choice of the vector 

v E Q the set Fu (t, v) = B (t) P + C (t)v (5.1) 

intersects G (t). Vector g (t) is contained in G (t) if and only if the inequality 

is valid for eyery choice of vector 1 But this means that Condition 3.1 is fulfilled. In 

fact, for any vector v* E Q , in the set Fu (t, v*) we can find a vector g* = 

B (t) u* + C (t)v* satisfying the inequality 

1’ (B (t)u* + C (t)v*) > :Ey mi; 1’ (B ( t)u --b C ( t)v) (5.3) 

for all 1. In particular, if I = - s (to), where s ( t,) E 5’ (t,, x0) (see (3.3) ). then 

inequality (3.4) follows from (5.3) i. e. Condition 3.1 is fulfilled, Thus, if Problem 
4.1 is regular, then Problem 3.1 is regular, 

We formulate the main conclusions in the following theorem. 
Theorem. let the encounter-evasion differential game (1.4) (1.5) be given ; let 

the set mi be closed and convex ; let {t,, x,,} be the initial nosition. Then : 
1 ‘.‘If Problem 3.1 is regular, the strategy pair {U,, V,} defined by conditions 

(3.5) and (2.9) forms a saddle point of the game and es(i) --7 e,(i). 
2”. If Problem 4.1 is regular, the strategy pair {U,, V,) defined by conditions 

(4.10) and (2.9) forms a saddle point of the game and R _ e&s) = es11). 

3’. If Problem 4.1 is regular, Problem 3.1 is regular as well and R - ~1’2) = 
&a(i) = es(l) 1 K - Q(2)* 

4’. If Problem 4.2 is regular, es(i) = es(i) = es(i). 
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0. Let us present an illustrative example for the system 

Yl’ = Y,, YZ. = Y,, Y,' = Ulr Y,' = Ulr 21’ = VI, 22’ = V? (6. 1) 

II u Ii = W + d)“* q p, 11 v 11 = (~~2 + G)'/~ < Y 

analyzed for another purpose and in another way in [lo]. The initial instant to and the 
game termination instant 6 are specified, and to < 6 - v/u. Let the first player mini- 

mize the distance from the set M = [{y, 2): (YI - zl)* i- (yz - 22)’ .< R2]. We have 

Xk’= Q(I) - 1) - L’k, k=l,2 (6.2) 

in the new variables zk = Yk - Zk + yk+a (6 - t), k = 1, 2. Here M = {x : 1 x II< R}. 
Then according to (3.2) and (4.19) 

as =,,‘f;~l[l’“* - r (t*, 6, l)l, 1 = (11, /J’ (6.3) 

r (&l 6, 1) = (112 + N’r(%p (2, - t*)Z - Y (6 - t*) -j- R) 

For Problem 3.1 to be regular it is sufficient that the function r (t*, 6, 1) be convex in 
1. This yields the condition 

R >, max 
LEC~o,~l 

Iv (6 - t.) - ‘/rp (0 - t*)*l = ‘/02/p 

Thus, Problem 3.1 is regular when R = 11~ +/p . Consequently, a strategy exists for the 

first player, ensuring encounter with the set M (for R = l/~&p), provided that the ini- 
tial position {to, xo} satisfies the condition es < 0, or 

II x0 ;I < %p (6 - to - v/p)2 (‘3.4) 

On the other hand, the set G (t) of (4.1) is empty here for to < t < 6 - v/p and, 

consequently, the statement of problem 4.1 becomes meaningless. 

The sets H (t) of (4.12) are circles of radius p (6 - t - v/p) for to < t < 6 - v/p 
and are empty for 6 - v/p < t < 6 . Consider the auxiliary system 

“k ‘* = Uk (8 - t) - vk + f (t) ukr k = 1, 2 

f(t) z 
( 

0, fo -< t < 6 - v/p 

t--6 -i-v/p, s-vlp<t< e 

(6.5) 

For (6.5) the sets H* (t) of (4.12) are circles of radius p (8 - t - V/P) for to < t < 6 - 
v/p , while each of them consists of the single point (0, 0) for 6 - VIP < t < 6 . 

Among the solutions of the equation 

x’* = h* (t), h* (1) E H* (t) (6.6) 

with initial conditions (6.4) we can find a solution x* = w* (t) such that w* (6) = 0, 
However, if the initial conditions do not satisfy (6.4) then no such solution exists for 

Eq. (6.6). The path {t, w* (t)} (to < t < 6) is u--stable by constructton : therefore, a 
strategy exists for the first player, leading the motion of system (6. 5) from the initial 
position (6.4) to the origin. The estimate 11 x (t) - x* (t) 11 < I/% G/p holds, where x (1), 
x* (t) are the solutions ofsystems (6.2), (6.5) respectively, with one and the same initial 
conditions, Hence it follows that a strategy exists for the first player, leading the motion 
of system (6.2) with initial conditions (6.4) onto the set M (R = l/z @/p) at the instant 
6 i. e. we have the same conclusion as we obtained above by using the extremal con- 



220 A.F.Kleimenov 

struction. 
The author thanks N. N, Krasovskii for posing the problem and for valuable advice. 
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METHOD FOR THE APPROXIMATE SOLUTION OF THE BELLMAN EQUATION 
FOR PROBLRM OF OPTIMAL CONTROL OF SYSTEMS 
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We propose a method for the approximate soluti --I of the Bellman equation for 
problems of optimal control of the final state o I system containing Gaussian 
white noise of small intensity. We examine the case when the solutions of the 
deterministic Bellman equation, corresponding to a noisefree system, have discon- 
tinuities of the first kind in their own values or in the values of their derivatives. We 
have found the necessary and sufficient conditions for the synthesis of optimal control 
of a system additively containing Gaussian white noise to coincide with the corre - 

sponding synthesis for the deterministic problem. We prove estimates on the er- 
ror in the method and we cite examples. Earlier the author had examined an 
analogous method for a restricted class of optimal control problems [ 11. Certain 
methods for the approximate solution of the Bellman equation were studied in 


